
STACKS

OVERVIEW

OVERVIEW

▪ What is a stack?

CSCE 2014 - Programming Foundations II 2

Stack of dishes Stack data structure

OVERVIEW

▪ A stack data structure only allows you to insert or remove

one data value at a time from the “top” of the stack

▪ Think of a pile of dishes in your cupboard

▪ We normally add or remove dishes one at a time

▪ When we want to use a dish we take the top dish

▪ We put clean dishes away one at a time on top of a pile

▪ This pattern of data usage has two names:

▪ FILO - first in, last out

▪ LIFO – last in, first out

CSCE 2014 - Programming Foundations II 3

OVERVIEW

▪ A wide range of programming problems can be solved

using a stack data structure

▪ We can use the stack as as a type of “memory” that records

and processes patterns in user input

▪ We can also use stack to store numerical data while

evaluating arithmetic expressions

▪ Finally, we simulate the execution of recursive functions by

storing a function’s parameter values on a stack

▪ Stacks can be implemented using fixed length arrays or

using linked lists

▪ Arrays are faster, but linked lists can never become full

CSCE 2014 - Programming Foundations II 4

STACKS

STACK INTERFACE

STACK INTERFACE

▪ The stack ADT has the following operations:

▪ Create – Initialize stack data structure

▪ Destroy – Delete stack data structure

▪ Push – Insert data onto the top of the stack

▪ Pop – Remove the top value from the stack

▪ Top – Retrieve the top value without removing it

▪ IsFull – Check if the stack is at max capacity

▪ IsEmpty – Check if the stack is has no data

▪ The type of data stored in the stack varies by application

▪ Character – string processing

▪ Float – numerical calculations

CSCE 2014 - Programming Foundations II 6

STACKS

STACK IMPLEMENTATION

ARRAY BASED

▪ We create an empty stack using an array with size = 10

and a variable top = -1 which is the index of the top item

▪ When we push a value 3 on the stack, we increment top

and store the data at array[top]

CSCE 2014 - Programming Foundations II 8

- - - - - - - - - -

0 1 2 3 4 5 6 7 8 9

3 - - - - - - - - -

0 1 2 3 4 5 6 7 8 9

top = -1

top = 0

ARRAY BASED

▪ As we push more data into the stack, the array fills in from

left to right and the value of top increases

CSCE 2014 - Programming Foundations II 9

3 1 4 1 - - - - - -

0 1 2 3 4 5 6 7 8 9

3 1 4 1 5 - - - - -

0 1 2 3 4 5 6 7 8 9

3 1 4 1 5 9 - - - -

0 1 2 3 4 5 6 7 8 9

push 1, top = 3

push 5, top = 4

push 9, top = 5

ARRAY BASED

▪ When we pop a data value off the stack, we remove the top

value from the array and decrement top by one

CSCE 2014 - Programming Foundations II 10

3 1 4 1 5 9 - - - -

0 1 2 3 4 5 6 7 8 9

3 1 4 1 5 - - - - -

0 1 2 3 4 5 6 7 8 9

3 1 4 1 - - - - - -

0 1 2 3 4 5 6 7 8 9

pop 9 off, top = 4

pop 5 off, top = 3

top = 5

ARRAY BASED

▪ A stack is full when top = size-1

▪ A stack is empty when top = -1

CSCE 2014 - Programming Foundations II 11

3 1 4 1 5 9 2 6 5 3

0 1 2 3 4 5 6 7 8 9

- - - - - - - - - -

0 1 2 3 4 5 6 7 8 9

ARRAY BASED

class Stack

{

public:

// Constructors

Stack();

Stack(const Stack & stack);

~Stack();

// Basic methods

void Push(int Number);

int Pop();

int Top();

CSCE 2014 - Programming Foundations II 12

ARRAY BASED

...

// Other methods

bool IsFull();

bool IsEmpty();

void Print();

private:

static const MAX_SIZE = 100;

int data[MAX_SIZE];

int top;

};

CSCE 2014 - Programming Foundations II 13

We declare a fixed size

array here for the stack

ARRAY BASED

// Constructor function

Stack::Stack()

{

for (int index=0; index<MAX_SIZE; index++)

data[index] = 0;

top = -1;

}

CSCE 2014 - Programming Foundations II 14

ARRAY BASED

// Copy constructor

Stack::Stack(const Stack & stack)

{

for (int index=0; index<MAX_SIZE; index++)

data[index] = stack.data[index];

top = stack.top;

}

CSCE 2014 - Programming Foundations II 15

ARRAY BASED

// Destructor function

Stack::Stack()

{

// Empty

}

CSCE 2014 - Programming Foundations II 16

ARRAY BASED

// Push method

void Stack::Push(int Number)

{

// Check for full stack

if (IsFull())

return;

// Save data in stack

cout << "push " << Number << endl;

data[++top] = Number;

}

CSCE 2014 - Programming Foundations II 17

This method ignores push if

the stack is already full

This increments top before

using its value to access array

ARRAY BASED

// Pop method

int Stack::Pop()

{

// Check for empty stack

if (IsEmpty())

return 0;

// Remove top value from stack

cout << "pop " << data[top] << endl;

return (data[top--]);

}

CSCE 2014 - Programming Foundations II 18

This method returns 0

if the stack is empty

This decrements top after

using its value to access array

ARRAY BASED

// Top method

int Stack::Top()

{

// Check for empty stack

if (IsEmpty())

return 0;

// Return top value from stack

cout << “top " << data[top] << endl;

return (data[top]);

}

CSCE 2014 - Programming Foundations II 19

This method ignores top if

the stack is empty

We are not changing value of

top so data is not removed

ARRAY BASED

// True if stack is full

bool Stack::IsFull()

{

return (top == MAX_SIZE-1);

}

// True if stack is empty

bool Stack::IsEmpty()

{

return (top == -1);

}

CSCE 2014 - Programming Foundations II 20

ARRAY BASED

// Print method

void Stack::Print()

{

cout << "stack: ";

for (int index=0; index<=top; index++)

cout << data[index] << ' ';

cout << endl;

}

CSCE 2014 - Programming Foundations II 21

LINKED LIST BASED

▪ We create an empty stack by creating an empty linked list

▪ When we push values on the stack we insert new nodes at

the head of the linked list

CSCE 2014 - Programming Foundations II 22

head

push 3

push 1

push 4

3head

1head 3

4head 1 3

LINKED LIST BASED

▪ When we pop values from the stack we delete nodes from

the head of the linked list

CSCE 2014 - Programming Foundations II 23

3head

1head 3 pop 4

pop 1

pop 3

4head 1 3

head

LINKED LIST BASED

▪ To get the top of the stack, we return the first value in the

linked list, without removing it from the list

▪ A linked list stack can not become full unless our program

runs out of memory on the heap (hopefully never)

▪ A linked list stack is empty when the head pointer is null

CSCE 2014 - Programming Foundations II 24

1head 3 top 1

LINKED LIST BASED

class Stack

{

public:

// Constructors

Stack();

Stack(const Stack & stack);

~Stack();

// Basic methods

void Push(int Number);

int Pop();

int Top();

CSCE 2014 - Programming Foundations II 25

LINKED LIST BASED

...

// Other methods

bool IsFull();

bool IsEmpty();

void Print();

private:

StackNode *Head;

};

CSCE 2014 - Programming Foundations II 26

We only need a pointer to

head of linked list

LINKED LIST BASED

// Node for stack data

class StackNode

{

public:

int Number;

StackNode *Next;

};

CSCE 2014 - Programming Foundations II 27

This class “breaks” the information

hiding principle of OOP, but we are

only going to use it in the Stack class

LINKED LIST BASED

// Constructor function

Stack::Stack()

{

Head = NULL;

}

CSCE 2014 - Programming Foundations II 28

LINKED LIST BASED

// Copy constructor

Stack::Stack(const Stack & stack)

{

// Create first node

StackNode *copy = new StackNode();

Head = copy;

// Walk list to copy nodes

StackNode *ptr = stack.Head;

CSCE 2014 - Programming Foundations II 29

LINKED LIST BASED

while (ptr != NULL)

{

copy->Next = new StackNode();

copy = copy->Next;

copy->Number = ptr->Number;

copy->Next = NULL;

ptr = ptr->Next;

}

// Tidy first node

copy = Head;

Head = copy->Next;

delete copy;

}

CSCE 2014 - Programming Foundations II 30

LINKED LIST BASED

// Destructor function

Stack::Stack()

{

// Delete nodes from stack

while (Head != NULL)

{

StackNode *Temp = Head;

Head = Head->Next;

delete Temp;

}

}

CSCE 2014 - Programming Foundations II 31

LINKED LIST BASED

// Push method

void Stack::Push(int Number)

{

// Allocate space for data

StackNode *Temp = new StackNode;

if (Temp == NULL) return;

// Insert data at head of list

Temp->Number = Number;

Temp->Next = Head;

Head = Temp;

}

CSCE 2014 - Programming Foundations II 32

This ignores push

operation if we run

out of memory

We insert node at the

head of linked list

LINKED LIST BASED

// Pop method

int Stack::Pop()

{

// Extract information from node

if (IsEmpty()) return 0;

int Number = Head->Number;

// Pop item from linked list

StackNode *Temp = Head;

Head = Head->Next;

delete Temp;

return Number;

}

CSCE 2014 - Programming Foundations II 33

This returns 0 is

stack is empty

We delete node before

returning top value

LINKED LIST BASED

// Top method

int Stack::Top()

{

// Extract information from node

if (IsEmpty()) return 0;

int Number = Head->Number;

// Return top value without

// removing from linked list

return Number;

}

CSCE 2014 - Programming Foundations II 34

This returns 0 is

stack is empty

LINKED LIST BASED

// True if stack is full

bool Stack::IsFull()

{

return false;

}

// True if stack is empty

bool Stack::IsEmpty()

{

return (Head == NULL);

}

CSCE 2014 - Programming Foundations II 35

LINKED LIST BASED

// Print method

void Stack::Print()

{

cout << "stack: ";

StackNode *Temp = Head;

while (Temp != NULL)

{

cout << Temp->Number << " ";

Temp = Temp->Next;

}

cout << endl;cout << endl;

}

CSCE 2014 - Programming Foundations II 36

STACKS

STACK APPLICATIONS

CHECKING PATTERNS

▪ Goal is to see if sequence of of a’s and b’s is of the form:

▪ ab, aabb, aaabbb, …

▪ Some number of a’s followed by same number of b’s

▪ Pattern notation: aNbN where N >= 1

▪ Solution using stack

▪ Use stack to count the a’s and b’s

▪ Push ‘a’ on the stack when you read an ‘a’

▪ Pop ‘a’ off the stack when you read a ‘b’

▪ Pattern matches if stack is empty at end of input

CSCE 2014 - Programming Foundations II 38

CHECKING PATTERNS

▪ Example: user enters “aabb”

▪ Stack is empty at end of the so input matches the pattern

CSCE 2014 - Programming Foundations II 39

a

a a a

empty read a

push a

read a

push a

read b

pop a

read b

pop a

CHECKING PATTERNS

▪ Example: user enters “aaab”

▪ Stack is NOT empty so input does not match the pattern

CSCE 2014 - Programming Foundations II 40

a

a a a

a a a a

empty read a

push a

read a

push a

read a

push a

read b

pop a

CHECKING PATTERNS

bool check_pattern(string str)

{ // Create stack

Stack stack;

// Read and process input string

for(int i=0; i < str.length(); i++)

{

if(str[i] == 'a')

stack.Push('a');

else if (str[i] == 'b')

stack.Pop();

}

CSCE 2014 - Programming Foundations II 41

This is where we implement

the push and pop logic to

keep track of a’s and b’s

CHECKING PATTERNS

// Check if stack is empty

if (stack.IsEmpty())

return true;

else

return false;

}

CSCE 2014 - Programming Foundations II 42

CHECKING PATTERNS

▪ Let’s test this code with some easy cases

▪ ab – match

▪ aabb – match

▪ ba – no match

▪ aaab – no match

▪ Let’s test this code with some hard cases

▪ abab – what happens?

▪ aaxbb – what happens?

▪ aaabbbb – what happens?

CSCE 2014 - Programming Foundations II 43

CHECKING PATTERNS

bool check_pattern(string str)

{ // Create stack

Stack stack;

// Process the a’s first

int i = 0;

while ((i < str.length()) && (str[i] == 'a'))

{

if (stack.IsFull()) return false;

stack.Push('a');

i++;

}

CSCE 2014 - Programming Foundations II 44

CHECKING PATTERNS

// Process the b’s next

while ((i < str.length()) && (str[i] == 'b'))

{

if (stack.IsEmpty()) return false;

stack.Pop();

i++;

}

// Check if stack is empty and all input read

return (stack.IsEmpty() && i == str.length());

}

CSCE 2014 - Programming Foundations II 45

CHECKING BRACES

▪ How can we check that braces ‘{‘ and ‘} are nested

properly in a C++ program?

▪ We could count them but that does not check ordering

▪ Solution using stack

▪ Push ‘{’ on the stack when you read an ‘{’

▪ Pop ‘{’ off the stack when you read a ‘}’

▪ Pattern matches if stack is empty at end of input

CSCE 2014 - Programming Foundations II 46

CHECKING BRACES

bool check_braces()

{ Stack s;

char c;

while (cin >> c)

{

if (c == '{')

s.Push('}');

else if (c == '}')

char ch = s.Pop();

}

return s.IsEmpty();

}

CSCE 2014 - Programming Foundations II 47

Push left brace if we

see it in the input

Braces are balanced if stack is

empty after reading all input

Pop left brace if we see

right brace in input

CHECKING BRACES

▪ Some simple testing input:

if (1 == 2)

{ cout << “Impossible” << endl; }

if (1+1 == 2)

{ cout << “Addition works” << endl; }

else

{ cout << “Addition fails” << endl; }

CSCE 2014 - Programming Foundations II 48

CHECKING BRACES

▪ What happens if we enter:

while (cin >> num)

} cout << num << endl; }

▪ What happens if we enter:

if (ch == ‘}’)

{ cout << “Found right bracket” << endl; }

else if (ch == ‘{’)

{ cout << “Found left bracket” << endl; }

▪ We need to add stack overflow and underflow checks

CSCE 2014 - Programming Foundations II 49

CHECKING BRACES

bool check_braces()

{

const char L_BRACE = '{';

const char R_BRACE = '}';

Stack stack;

char ch;

CSCE 2014 - Programming Foundations II 50

Define character constants to

avoid typing ‘{‘ and ‘}’ in code

CHECKING BRACES

// Read input until EOF

while (cin >> ch)

{

// Push brace onto stack

if (ch == L_BRACE)

{

if (stack.IsFull()) return false;

stack.Push(ch);

}

CSCE 2014 - Programming Foundations II 51

CHECKING BRACES

// Pop brace from stack

else if (ch == R_BRACE)

{

if (stack.IsEmpty()) return false;

if (stack.Top() != L_BRACE) return false;

ch = stack.Pop();

}

}

// Check stack is empty at end

return stack.IsEmpty();

}

CSCE 2014 - Programming Foundations II 52

Check matching brace before

removing from stack

POSTFIX EXPRESSIONS

▪ A postfix expression is written with the operators

following the values

▪ 4 7 + is equivalent to 4 + 7

▪ 2 3 + 5 * is equivalent to (2 + 3) * 5

▪ It is easy to evaluate postfix expressions using a stack to

store input values and intermediate results

▪ When we see a value, we push it on the stack

▪ When we see an operator, we pop two values from stack

perform the operation and push result

▪ The value on the stack at the end is the final result

CSCE 2014 - Programming Foundations II 53

POSTFIX EXPRESSIONS

▪ Example: Assume the user has entered 2 3 + 5 *

CSCE 2014 - Programming Foundations II 54

The top of the stack

contains the answer

POSTFIX EXPRESSIONS

float postfix()

{

float_stack s;

string input;

// Loop processing user input

while (cin >> input)

{

// Handle addition

if (input == “+”)

s.push(s.pop() + s.pop());

CSCE 2014 - Programming Foundations II 55

POSTFIX EXPRESSIONS

...

// Handle multiplication

else if (input == “*”)

s.push(s.pop() * s.pop());

// Handle input value

else

s.push(atof(input.c_str()));

}

return s.top();

}

CSCE 2014 - Programming Foundations II 56

POSTFIX EXPRESSIONS

▪ This solution is short and simple but it does not handle

subtraction or division

▪ If user enters 6 2 – we want to calculate 6 - 2

▪ s.push(s.pop() – s.pop()) is wrong

▪ s.push(- s.pop() + s.pop()) is correct

▪ How should we implement division?

▪ Previous solution does not do error checking

▪ Should check for stack underflow in pops

▪ Should check only one value on stack at end

▪ See full solution on class website

CSCE 2014 - Programming Foundations II 57

STACK BASED

FLOOD FILL

▪ Flood fill is an algorithm used in most paint packages to

fill in the interior of a line drawing

▪ User draws the object outline

▪ User selects a seed point inside the object

▪ User selects the desired color

▪ Algorithm simulates “flooding” to fill region

CSCE 2014 - Programming Foundations II 58

Stack based flood fill

demo from Wikipedia

https://en.wikipedia.org/wiki/Flood_fill#/media/File:Wfm_floodfill_animation_stack.gif
https://en.wikipedia.org/wiki/Flood_fill#/media/File:Wfm_floodfill_animation_stack.gif

STACK BASED

FLOOD FILL

▪ Flood fill can be implemented recursively as follows:

▪ We start at seed location (x,y) in picture

▪ If pixel(x,y) is not already colored, we color this pixel and

make four recursive calls to fill in adjacent locations

floodfill(x+1, y);

floodfill(x-1, y);

floodfill(x, y+1);

floodfill(x, y-1);

▪ Recursion terminates if the pixel is already colored (or if

the location is outside the boundary of the image)

▪ If the flood fill region is large, this could result in millions of

recursive calls and crash the program

CSCE 2014 - Programming Foundations II 59

STACK BASED

FLOOD FILL

void floodfill(int picture[SIZE][SIZE],

int x, int y, int value)

{

// Check terminating condition

if ((x >= 0) && (x < SIZE) &&

(y >= 0) && (y < SIZE) &&

(picture[y][x] != value))

{

// Paint this pixel

picture[y][x] = value;

CSCE 2014 - Programming Foundations II 60

Checking we are

inside array bounds

before checking pixel

STACK BASED

FLOOD FILL

...

// Visit four neighbors

floodfill(picture, x+1, y, value);

floodfill(picture, x-1, y, value);

floodfill(picture, x, y+1, value);

floodfill(picture, x, y-1, value);

}

}

CSCE 2014 - Programming Foundations II 61

Four recursive calls to visit

the four adjacent locations

STACK BASED

FLOOD FILL

▪ Flood fill can also be implemented using a stack:

▪ We start by pushing the seed location (x,y) on stack

▪ We loop until the stack is empty

▪ We pop (x,y) location of current point

▪ If pixel(x,y) is not already colored, we color this pixel and

save adjacent locations on stack

push(x, y-1);

push(x, y+1);

push(x-1, y);

push(x+1, y);

▪ We stop filling when the stack is empty

▪ This method is faster and safer than recursive flood fill

CSCE 2014 - Programming Foundations II 62

STACK BASED

FLOOD FILL

void floodfill(int picture[SIZE][SIZE],

int startx, int starty, int value)

{

// Push start point on stack

Stack s;

s.Push(startx); s.Push(starty);

// Loop while stack not empty

while (!s.IsEmpty())

{

CSCE 2014 - Programming Foundations II 63

We push two values

for (x,y) location

STACK BASED

FLOOD FILL

// Pop next point off stack

int x = 0;

int y = 0;

s.Pop(y); s.Pop(x);

// Check if pixel is painted

if ((x >= 0) && (x < SIZE) &&

(y >= 0) && (y < SIZE) &&

(picture[y][x] != value))

{

CSCE 2014 - Programming Foundations II 64

We pop two values in reverse

order to get (x,y) location

Checking we are

inside array bounds

before checking pixel

STACK BASED

FLOOD FILL

// Paint this pixel

picture[y][x] = value;

// Push four neighbors

s.Push(x); s.Push(y-1);

s.Push(x); s.Push(y+1);

s.Push(x-1); s.Push(y);

s.Push(x+1); s.Push(y);

}

}

}

CSCE 2014 - Programming Foundations II 65

We push two values

for each of the four

(x,y) locations

STACK BASED

FLOOD FILL

▪ We showed how flood fill can be implemented using

recursion or using a stack to store pixel locations

▪ In the recursive floodfill code we visited the four adjacent

(x,y) locations in RLTB order

▪ In the stack based floodfill code we pushed four adjacent

(x,y) locations on the stack in BTLR order but when we

pop the stack we visit adjacent locations in RLTB order

▪ We could reduce the stack size by checking if each (x,y)

location is in bounds and colored before pushing

▪ This is a classic space-time tradeoff

▪ See full solution on class website

CSCE 2014 - Programming Foundations II 66

STACKS

SUMMARY

SUMMARY

▪ Stacks are a very simple abstract data type that store data

in a last in first out (LIFO) order

▪ We can only store data using push

▪ We can only access data using pop or top

▪ Stacks can be implemented using arrays or linked lists

▪ Array implementation is much faster but can get full

▪ Linked list implementation can never get full but is slower

▪ Stacks can be used to solve wide range of problems

▪ Checking for symmetry, postfix evaluation, flood fill

CSCE 2014 - Programming Foundations II 68

	Slide 1: Stacks
	Slide 2: OVERVIEW
	Slide 3: OVERVIEW
	Slide 4: OVERVIEW
	Slide 5: stacks
	Slide 6: Stack interface
	Slide 7: stacks
	Slide 8: Array BASED
	Slide 9: Array based
	Slide 10: Array based
	Slide 11: Array based
	Slide 12: Array based
	Slide 13: Array based
	Slide 14: Array based
	Slide 15: Array based
	Slide 16: Array based
	Slide 17: Array based
	Slide 18: Array based
	Slide 19: Array based
	Slide 20: Array based
	Slide 21: Array based
	Slide 22: Linked list based
	Slide 23: Linked list based
	Slide 24: Linked list based
	Slide 25: Linked list based
	Slide 26: Linked list based
	Slide 27: Linked list based
	Slide 28: Linked list based
	Slide 29: Linked list based
	Slide 30: Linked list based
	Slide 31: Linked list based
	Slide 32: Linked list based
	Slide 33: Linked list based
	Slide 34: Linked list based
	Slide 35: Linked list based
	Slide 36: Linked list based
	Slide 37: stacks
	Slide 38: Checking patterns
	Slide 39: Checking patterns
	Slide 40: Checking patterns
	Slide 41: Checking patterns
	Slide 42: Checking patterns
	Slide 43: Checking patterns
	Slide 44: Checking patterns
	Slide 45: Checking patterns
	Slide 46: Checking braces
	Slide 47: Checking braces
	Slide 48: Checking braces
	Slide 49: Checking braces
	Slide 50: Checking braces
	Slide 51: Checking braces
	Slide 52: Checking braces
	Slide 53: Postfix expressions
	Slide 54: Postfix expressions
	Slide 55: Postfix expressions
	Slide 56: Postfix expressions
	Slide 57: Postfix expressions
	Slide 58: Stack based flood fill
	Slide 59: Stack based flood fill
	Slide 60: Stack based flood fill
	Slide 61: Stack based flood fill
	Slide 62: Stack based flood fill
	Slide 63: Stack based flood fill
	Slide 64: Stack based flood fill
	Slide 65: Stack based flood fill
	Slide 66: Stack based flood fill
	Slide 67: stacks
	Slide 68: summary

